Sea ice and ABL parameterizations in the regional climate model "CCLM polar"

Günther Heinemann, Rolf Zentek

Environmental Meteorology, University of Trier, 54286 Trier, Germany

SPONSORED BY THE

Federal Ministry of Education and Research

1

Regional climate model CCLM polar

CCLM 15km (C15) whole Arctic/Antarctic, 5km and 1km for subdomains 60 layers (13-15 below 500m, lowest level at 5m)

Nested in ERA5/ERA-I or GCM (ECHAM, AWI-CM)

Temperature profile South Pole Winter 2015 (April-Sept.)

Zentek and

Heinemann 2020

E

SBL parameterization

CCLM, 15km (Antarctica)

Default parameterizations C15: 2m-temp. too warm, SBL too turbulent New turbulence scheme T15

SBL parameterization

Default turbulence scheme

Turbulent diffusion coefficients

 $K_{m,min} = K_{H,min} = 0.4 \text{ m}^2/\text{s}$

mixing length l

$$\frac{1}{l} = \frac{1}{\kappa z} + \frac{1}{\lambda_{\infty}}$$
$$\lambda_{\infty} = \text{asymptotic mixing length (500m)}$$

New turbulence scheme

 $K_{m,min} = K_{H,min} = 0.01 \text{ m}^2/\text{s}$

Hebbinghaus and Heinemann (2006):

$$\frac{1}{l} = \frac{1}{\kappa z} + \frac{1}{\lambda_{\infty}} + \frac{1}{l_b(z)}$$

$$l_b = \frac{\sigma_w}{N}$$
 = buoyancy length
 $\overline{w'^2} = {\sigma_w}^2 \approx \frac{2}{3}TKE$

4

Katabatic wind and boundary layer front experiment around Greenland (KABEG) April/May 1997

Aircraft measurements of turbulence in katabatic winds

Verification over sea ice, Antarctic

BAS weather buoys

Zentek and Heinemann 2020

		Temperature bias				
Name	N	Winter		Sum	Summer	
	(hours)	C15	T15	C15	T15	
AWS 1	7044	-0.3	-1.4	0.9	0.7	
AWS 2	7915	2.5	0.4	1.5	0.8	
AWS 3	6640	-0.8	-1.7	0.1	-0.1	
CCLM CCLM New Default turbulence scheme						

Sea ice model developments at Uni Trier

Two-layer sea-ice model (ice and snow layer)

Sea ice physics	Old	New	
Thin ice (0.01-0.2 m)	No snow layer		
Thick ice (>0.2 m)	Fixed snow layer 0.1m	Variable snow layer (10% of the ice thickness)	
Penetration of solar radiation	-	In snow and ice layer	
Temperature gradients	linear	Non-linear depending on layer thickness (Mironov et al. 2012)	
Heat budgets	Thick ice: only in snow layer	snow and ice layer	
Albedo	depending on temperature and ice thickness, including a melt pond parameterization (Køltzow 2007, modified)		

Heinemann et al. (2021, 2022)

Sea ice: Tile approach for energy fluxes

Sea ice concentration (SIC): Daily AMSR-E/2 data (6km), MODIS (1km), or GCM

Grid-scale ice thickness, SIC>0.7: Arctic PIOMAS, Antarctic 1m, or GCM **SIC≤0.7 (polynyas):** depending on temperature and SIC

Sub-grid scale thin ice: Variable, computed from thermodynamic ice growth over a time period of 24 h for polynyas (SIC≤0.7) and 6 h for leads (SIC>0.7)

Fast Ice

0.2 m

0.5 m

0.1 m

0.05 m

Form drag and roughness lengths

Form drag: C_{DN} depending on SIC

Sea ice

Roughness length z₀ depending on ice thickness

Roughness length for heat: ratio z_h/z_0 as a function of roughness Reynolds number Re_{*} (Andreas et al. 1987)

$$\operatorname{Re}_{*} = \frac{u_{*}z_{0}}{v} \qquad \ln \frac{z_{h}}{z_{0}} = b_{0} + b_{1} \ln \operatorname{Re}_{*} + b_{2} \left(\ln \operatorname{Re}_{*} \right)^{2}$$

Arctic: Transarktika April 2019, 1.8m thick ice with leads

Heinemann et al. (2021)

10 tower

Wind and temp./humidity at 2 levels Pressure, radiation (4 components) **Ship**

Radiosonde

MW temperature profiler

IWV radiometer

Ceilometer

linear average: no form drag, $z_h = z_0$

linear average: no form drag, $z_h = z_0$

After Heinemann et al. (2021), modified ¹⁸

Difference 2m-temperature April 2019

New tile (linear average) - New

linear average: no form drag, $z_h = z_0$

Comparison with MODIS ice surface temperatures

11 April 2019

Conclusions

- New SBL parameterizations lead to an improved simulation of surface inversions and katabatic jets over ice sheets, but also to a cold bias over sea ice.
- new sea-ice parameterizations and a new tile approach in CCLM show a good agreement with the measurements for the near-surface variables and atmospheric structure.
- There is still a cold bias over sea ice, particularly for weak winds.

ongoing work: improvement of parameterizations using MOSAiC data

Some references

Zentek, R.; Heinemann, G. Verification of the regional atmospheric model CCLM v5.0 with conventional data and lidar measurements in Antarctica. Geosci. Model Dev. 2020, 13, 1809–1825, doi:10.5194/gmd–13–1809–2020.

Heinemann, G., 2020: Assessment of regional climate model simulations of the katabatic boundary layer structure over Greenland. Atmosphere 11, 571, doi:10.3390/atmos11060571.

Heinemann, G.;Willmes, S.; Schefczyk, L.; Makshtas, A.; Kustov, V.; Makhotina, I. Observations and Simulations of Meteorological Conditions over Arctic Thick Sea Ice in Late Winter during the Transarktika 2019 Expedition. Atmosphere 2021, 12, 174. doi.org/10.3390/atmos12020174

Heinemann, G., Schefczyk, L., Willmes, S., Shupe, M., 2022: Evaluation of simulations of near-surface variables using the regional climate model CCLM for the MOSAiC winter period. Elem. Sci. Anth., 10 (1). DOI: 10.1525/elementa.2022.00033.

Observations and model data published on PANGAEA and Zenodo

